59 research outputs found

    Electric coupling to the magnetic resonance of split ring resonators

    Full text link
    We study both theoretically and experimentally the transmission properties of a lattice of split ring resonators (SRRs) for different electromagnetic (EM) field polarizations and propagation directions. We find unexpectedly that the incident electric field E couples to the magnetic resonance of the SRR when the EM waves propagate perpendicular to the SRR plane and the incident E is parallel to the gap-bearing sides of the SRR. This is manifested by a dip in the transmission spectrum. A simple analytic model is introduced to explain this interesting behavior.Comment: 4 pages, 4 figure

    Electrochemical Properties of APCVD alpha-Fe2O3 Nanoparticles at 300 degrees C

    Get PDF
    The growth of hematite (FeIII oxide) by atmospheric pressure chemical vapor deposition was possible at 300 oC by controlling the nitrogen flow rate through the iron precursor bubbler. An increase of crystallinity along with the presence of compact interconnected nanoparticles was observed upon increasing the nitrogen flow rate. The amount of incorporated charge was the highest for the 0.6 L min−1 coating presenting reversibility after a period of 1400 s as obtained from chronoamperometry measurements. Additionally, the charge transfer of lithium‐ions across the FeIII oxide / electrolyte interface was easier enhancing its performance presenting capacitance retention of 94 % after 500 scans. The importance of nitrogen flow rate towards the deposition of an anode with good stability and effective electrochemical behavior is highlighted

    Magnetic metamaterials at telecommunication and visible frequencies

    Full text link
    Arrays of gold split-rings with 50-nm minimum feature size and with an LC resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a coupling via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800-nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.Comment: 4 pages, 3 figure

    A comparative study of the magnetic and magnetotransport properties between a metallic (x=0.6) and a semiconducting (x=0.2) member of the solid solution LaNixCo1-xO3

    Full text link
    We present a comparative study of both the magnetic and magnetotransport properties for two members of the perovskite solid solution LaNixCo1-xO3 (x=0.2, 0.6) located on opposite sides of the chemically induced metal-to-insulator transition. LaNi0.6Co0.4O3 exhibits metallic behavior and small but negative magnetoresistance, whereas LaNi0.2Co0.8O3 exhibits semiconducting behavior and giant negative magnetoresistance at low temperatures. On the other hand, we observe pronounced similarities in the magnetic properties of both compounds. A consistent explanation regarding the origin of the magnetoresistance in the two members of the solid solution is provided.Comment: 29 pages, 10 figures, pdf forma

    Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials

    Get PDF
    We present free-space microwave measurements on composite metamaterials (CMMs) consisting of split ring resonators (SRRs) and wires either on the same dielectric board or on alternating boards. Our experimental results disprove the widely held belief that the occurrence of a CMM transmission peak within the stop bands of the SRRs alone and wires alone constitutes a clear demonstration of left-handed (LH) behavior. This belief is based on the assumption that the stop bands of SRRs alone and wires alone are not affected by the simultaneous presence of both. We show here that this assumption is wrong: The effective plasma frequency, ω′p, of the CMM is actually substantially lower than the wires-only plasma frequency, ωp; furthermore, the in-plane wires, as opposed to the off-plane case, push the magnetic resonance frequency of the SRRs, ωm, to a higher value, ω′m, for the CMM. We conclude that the criterion for deciding whether a peak in the transmission spectrum through a CMM is really left-handed is for the peak to be located above ω′m and below ω′p. Our results provide a definite way for experimentally identifying ω′p

    Planar designs for electromagnetically induced transparency in metamaterials

    Full text link
    We present a planar design of a metamaterial exhibiting electromagnetically induced transparency that is amenable to experimental verification in the microwave frequency band. The design is based on the coupling of a split-ring resonator with a cut-wire in the same plane. We investigate the sensitivity of the parameters of the transmission window on the coupling strength and on the circuit elements of the individual resonators, and we interpret the results in terms of two linearly coupled Lorentzian resonators. Our metamaterial designs combine low losses with the extremely small group velocity associated with the resonant response in the transmission window, rendering them suitable for slow light applications at room temperature.Comment: 11 pages, 8 figure

    Self-organization approach for THz polaritonic metamaterials

    Get PDF
    In this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra. Applying an effective medium approach to describe the response of our samples, we predicted a range of frequencies in which most of our systems behave as homogeneous anisotropic media with a hyperbolic dispersion relation, opening thus possibilities for using them in negative refractive index and imaging applications at THz range

    Realization of La2MnVO6: Search for half-metallic antiferromagnetism?

    Full text link
    Single-phase polycrystalline La2MnVO6 samples were synthesized by arc melting and characterized by X-ray diffraction, magnetization and resistivity measurements. We find that the compound has cubic (space group), partly ordered double perovskite structure. The sample exhibits ferrimagnetic behavior and variable-range hopping conductivity. We conclude based on the magnetic properties that both Mn and V ions are trivalent; moreover, the Mn3+ ions are in a high-spin state, which is the reason that the compound is not a half-metallic antiferromagnet.Comment: 15 pages, 6 figure

    Metamaterials proposed as perfect magnetoelectrics

    Full text link
    Magnetoelectric susceptibility of a metamaterial built from split ring resonators have been investigated both experimentally and within an equivalent circuit model. The absolute values have been shown to exceed by two orders of magnitude that of classical magnetoelectric materials. The metamaterial investigated reaches the theoretically predicted value of the magnetoelectric susceptibility which is equal to the geometric average of the electric and magnetic susceptibilities.Comment: 5 pages, 3 figure
    corecore